Zhewen Pan

1415 Engineering Dr, EH 3542, Madison, WI 53706 zhewen.pan@wisc.edu \(\phi \) zhewenp.com \(\((765) - 337 - 0549 \)

Education

University of Wisconsin-Madison, Electrical and Computer Engineering *PhD*

2022 - Present

- · Advisor: Joshua San Miguel
- · Research interest: Efficient Architectures and Systems

University of Wisconsin-Madison, Electrical and Computer Engineering

2020 - 2022

Master of Science in Computer Engineering, GPA: 3.94/4

· Relevant coursework: Computer Architecture, Operating Systems, Compilers, High Performance Computing.

Purdue University, Electrical and Computer Engineering Bachelor of Science with Highest Distinction, GPA: 3.99/4

2016 - 2020

· Relevant coursework: Computer Organization, ASIC Design, Statistical Machine Learning.

Awards & Honors

Best Paper Honorable Mention, ISCA	2025
IEEE Micro Top Picks Honorable Mention	2025
First Place, Google "Sustainability for AI Datacenters" N+1 Institute Reverse Pitch Competition Scholarship	2024
Department of ECE Gerald Holdridge Teaching Excellence Award, UW-Madison	2024
Distinguished Artifact Award, ASPLOS	2024
Second Place, ACM Student Research Competition (SRC) Grand Finals Grad Division	2023
Gold Medal, ACM Student Research Competition (SRC) SIGMICRO Grad Division	2023
gem5 Boot Camp Travel Grant	2022
ISCA Student Travel Grant	2022
Wisconsin Distinguished Graduate Fellowship - Schneider	2022

Publications - Conferences

Zhewen Pan, Joshua San Miguel. **The XOR Cache: A Catalyst for Compression**. *International Symposium on Computer Architecture (ISCA)*, 2025. [paper]. **Pagest Paper Honorable Mention**.

Zhewen Pan, Joshua San Miguel, Di Wu. Carat: Unlocking Value-Level Parallelism in GEMMs. ACM Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2024. [paper]. PIEEE Micro Top Picks 2025 Honorable Mention & Poistinguished Artifact Award

Di Wu, Jingjie Li, <u>Zhewen Pan</u>, Younghyun Kim, Joshua San Miguel. **uBrain: A Unary Brain Computer Interface**. *International Symposium on Computer Architecture (ISCA)*, 2022. [paper].

Publications – Workshops

Zhewen Pan, Joshua San Miguel. **The XOR Cache: A Catalyst for Compression**. *ACM Student Research Competition (SRC) Co-located w/ MICRO*, 2023. **The ACM SRC 2023 SIGMICRO gold medal & grand finals second place**

<u>Zhewen Pan</u>, Di Wu, Joshua San Miguel. **T-MAC: Temporal Multiplication with Accumulation**. *The 4th Young Architect Workshop* (YArch) Co-located w/ ASPLOS, 2022.

Research

Harnessing Fault Tolerance for Sustainability

Oct 2024 - Present

- · Characterizing memory failure patterns over time and developing models to estimate carbon emissions from aging hardware.
- · Mapping error-tolerant data to aging memory cells to extend hardware lifetime and reduce embodied carbon.

🏆 Google "Sustainability for Al Datacenters" N+1 Institute Reverse Pitch Competition Scholarship, first place

XOR Cache: A Catalyst for Compression

Sep 2022 - Nov 2024

- · Identified cross-level value redundancy in caches and reframed it as an opportunity for compression.
- · Designed a compressed cache that co-locates similar lines using XOR pairing, enhancing compressibility and therefore efficiency.

Carat: Unlocking Value-Level Parallelism in GEMMs

Dec 2021 - Mar 2023

- · Introduced value-level parallelism to reduce redundant computation by processing only unique input values in AI workloads.
- · Designed an accelerator that reuses results via temporal subscription and value delivery, for efficient multiplier-free execution.

uBrain: Unary Computing Brain Computer Interface

Oct 2021 - Mar 2022

· Designed and synthesized unary hardware modules and performed regression analysis on efficiency statistics.

Scalable Deadlock-Freedom Network-on-Chip

Jan 2021 - May 2021

- · Characterized deadlock criticality based on the impact of positive feedback loops between congestion and deadlock formation.
- · Proposed and evaluated a scalable subactive deadlock-removal scheme based on packet bypassing using gem5-Garnet.

Employment

Arm IncMay 2021 - Aug 2021System IP Interconnect Performance Modeling InternAustin, TX (Remote)

· Developed a test suite for Coherent Mesh Interconnect performance modeling flow and evaluated associated tooling.

Professional Service

ISCA Undergrad Architecture Workshop (uArch) Mentor	2023, 2025
MICRO Artifact Evaluation Program Committee	2022

Teaching

Teaching Assistant, UW-Madison, ECE/CS 552: Introduction to Computer Architecture	Fall 2023, Spring 2024, Spring 2025
Teaching Assistant, UW-Madison, ECE 554: Digital Engineering Laboratory	Spring 2022
Teaching Assistant, Purdue, ECE 270: Digital System Design	Spring 2020
Teaching Assistant, Purdue, ECE 362: Microprocessor Systems and Interfacing	Spring 2019
Teaching Assistant, Purdue, ECE 270: Digital System Design	Spring 2018
Teaching Assistant, Purdue, ENGR 131: Transforming Ideas to Innovation I	Fall 2017